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Assessing the economic value and structure of large-
scale electricity storage 

Alan Lamont 

Abstract 

 If large-scale electricity storage becomes a significant technology in the energy 
system, it will be large enough to affect the prices on the system.  The changes in system 
prices will affect both the optimal economic penetration of storage itself, and the 
penetration of other technologies, including renewables.  This research develops a 
theoretical framework to define the optimal operation of a storage system taking into 
account the effect on system prices, and to evaluate the marginal values of the charge and 
discharge power capacity and the energy storage capacity of a system.  The theoretical 
approach is applied to a realistic system model to derive the marginal values of the 
charge and discharge power component and the energy storage component at various 
levels of penetration.  The results illustrate the decline in marginal value of components,  
and the impact that the capacity of one component has on the marginal value of the other. 

1. Introduction 

 It is frequently suggested that large-scale energy storage will be an important part of a 
future, low carbon energy system. Proposed future energy systems based on large 
renewables either explicitly or implicitly assume that there will be substantial storage 
available to make efficient use of the intermittent power generation through arbitrage 
between periods of high energy availability and periods when energy is scarce (Jacobson 
and Delucchi (2009), Hoffman, et al (2009), Turner (1999)).  Storage could also be used 
to make more effective use of low-carbon baseload generation by storing electricity from 
baseload electricity overnight and releasing it during the day. To assess the viability and 
the role of large-scale electricity storage, it is necessary to identify and evaluate the 
factors that determine the economic penetration of storage, the optimal structure of a 
storage system, and the economic interaction between storage and generation 
technologies. This paper develops a theoretical, optimizing framework to assess the 
marginal value of a storage system and its components, and to determine how the system 
should optimally be operated. It then presents a practical example to illustrate the 
marginal values of charging and discharging capacity and storage capacity.  

 A number of studies have assessed the economic viability of electricity storage in 
different markets (Eyer et al, 2004), Iannucci et al, 2003), (NYSERDA, 2007), (Korpaas, 
et al, 2003), (Lamont, 2003), (EPRI, 2007). These studies considered small-scale 
storage—systems that are small enough that they do not affect operation or prices of the 
electric system as a whole. These evaluated the net revenues that would accrue to the 
owner of a storage facility and compared them to the cost of installing and operating the 
storage facility. Analysis of small-scale systems gives a good understanding of the 
possibilities for initial penetration of storage.  These essentially tell us the cost point at 
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which an investor might be willing to invest in the first storage facility in a given market.  
However, analysis of small-scale systems does not provide a basis for estimating eventual 
market penetration of large-scale storage nor the effect that storage might have on the 
balance of the system. 

 Large-scale storage affects the system by increasing the load on the system and 
raising prices when it charges, and decreasing the load and lowering prices when it 
discharges.  By changing prices, storage can affect the economics and investments in the 
generators on the system.  For example, it is often suggested that storage will enable the 
large-scale penetration of renewables such as wind.  Large-scale wind will tend to 
depress prices in those hours that it generates the most.  This reduces the marginal value 
of wind capacity and limits further investment (Lamont, 2008).  However, the charging of 
storage in those hours would increase loads and prices and encourage further investment 
in wind. 
 As storage penetrates the system, the marginal value of capacity decreases since it 
raises the prices during charging hours and decreases the prices during discharging hours 
and decreases the net revene. Eventually further investment is not economic and there is 
no further penetration. 
 Assessing the role and penetration of large-scale storage requires understanding the 
way that storage will affect prices, and, in turn, the effect of prices on the economics of 
storage.  The impact of storage on prices has been mentioned as an issue in some studies 
(e.g. NYSERDA, 2007).  Sioshansi et al (2009) estimates the price impact of large-scale 
storage in order to evaluate the welfare implications of changing prices in the PJM 
system.  However, these do not analyze the optimal operation of storage taking into 
account the effect of storage on prices, nor do they assess the impact of the changing 
prices on the economic viability of storage. 
 The overall economic effect of storage is determined by both the magnitude and 
duration of the price changes. The magnitude of the price change is determined by the 
charge and discharge power capacity since this determines the degree to which storage 
can change the loads on the system.  The duration of price changes are determined by the 
energy storage capacity of the system.  The analyses of small systems do not address the 
economics of charging capacity since, by definition, the charging capacity small enough 
that it does not affect prices on the system. However, charging and discharging capacity 
is a substantial part of the cost of a storage system (Johansson, et al, 1993) (Boutacoff, 
1989), (ESA, 2009). The costs and marginal value of the charging/discharging capacity 
have a substantial effect on the design of the system. 
 In general, the charge/discharge power capacity can be sized separately from the 
energy storage capacity. As either type of capacity is increased, its marginal value 
decreases. In addition, changing the level of one type of capacity will change the 
marginal value of the other type.  The practical illustration portion of this paper uses the 
optimality conditions from the theoretical analysis to compute the marginal values of 
charge/discharge capacity and storage capacity.  From this information it develops a 
contour map of the marginal values of both types of capacity. This map shows the 
optimal levels of the capacities as a function of their costs. 
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 This analysis uses an optimizing framework where charging and discharging 
decisions are made with perfect knowledge of future conditions.  When storage is 
actually operated in the field, it must be operated with stochastic estimates of future 
conditions and will not be as efficiently operated as in the optimized model.  However, 
the optimization model provides two essential understandings.  First, it identifies the 
principles of optimal operation to maximize the value of the storage.  In the stochastic 
context this tells us the parameters that should be estimated and the procedures for using 
them to operate the system.  Second, the optimization model approach estimates the 
maximum value that storage can provide.  This allows us to determine whether or not 
storage would be worthwhile in a given situation.  Since storage can be configured with 
many different technologies with different efficiencies and different costs of the 
component parts, optimization model can suggest the best type of technology to use in a 
given situation and the benefits of research and development for different components of 
the system.  

 A large-scale storage system might develop through the installation of a few large, 
utility owned centralized installations, or through the aggregation of thousands of small-
scale installations.  Either case would have approximately the same impact on the system 
as a whole, provided that they are operated efficiently. 

 We note that storage might play a number of economically useful roles in a system 
aside from arbitrage.  Among them are: regulation, congestion relief, and transmission 
deferral (Eyer et al, 2004). These applications require different forms of analysis than 
what is presented here.  This analysis only addresses arbitrage in large-scale systems. 

2. Analytic model of large-scale storage 

The analysis used here develops a cost minimizing optimization model of the system 
to clarify how the system should be optimally structured and operated. To state the 
problem:  Let us assume that there is a set of generators meeting the demands over a 
year’s operation.  For convenience we will break the year into one hour periods (8,760 
hours for the year), although the analysis could be conducted at any other period length.  
At each hour the end-use demand is met by dispatching the generators and, possibly, the 
storage.  The generators can be a mixture of dispatchable and intermittent generators.  
The storage system can charge from the generators.  Given the set of hourly demands, 
costs and efficiencies of the generators, and the hourly production of the intermittent 
generators, the model determines the condition for the cost minimizing configuration and 
operation of all the generators and the storage system.  This is essentially an extension of 
the optimal capacity expansion model with intermittent generation presented in Lamont  
(2008). 

Figure 1 illustrates the three basic components of the storage system: The storage 
reservoir--this might be a literal reservoir in the case of pumped hydro storage, a 
chemical compound, a tank of hydrogen, or a spinning flywheel--and the charge and 
discharge devices. In the case of electro-chemical storage this is basically wiring, 
although it might include structures for heat dissipation.  In the case of pumped hydro, it 
is a pump-generator. For compressed air energy storage, it is a compressor (usually part 
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of a combustion turbine).  For most storage systems the same physical device charges and 
discharges the reservoir, although logically these can be separate devices.  The 
mathematical analysis treats them as separate devices.  However, it is easy to deal with 
the case where they are the same device.  

 

Figure 1:  schematic of energy storage in the generation system 

2.1. Nomenclature 
 The generation technologies are denoted by the subscript a.  These are dispatched to 
meet the demand in each hour, Dh.  Some of these technologies are intermittent so that in 
some hours their available capacity is only a fraction, 

! 

Fa,h
prd , of their nameplate (or peak) 

capacity.  For a dispatchable generator, 

! 

Fa,h
prd is 1.0 for each hour (we ignore forced 

outages in this analysis).  Each generator will be dispatched to its full available capacity 
for at least one hour in a year1. 

The storage goes through a number of cycles of completely charging and discharging.  
The energy stored might increase and decrease during a cycle, but the cycle is only 
complete once the storage has completely charged and then completely discharged. 
Figure 2 illustrates the charging and discharging and shows the variables used to 
characterize the cycling of the storage.  We identify the cycles by the subscript j.  Here it 
is assumed that the storage starts off empty at hour ej.  It then charges until completely 
full by hour fj.  To complete the cycle, it completely discharges by hour ej+1. 

The hours at which storage completely charges and completely discharges are 
decision variables in the problem.  The formulation below initially treats these are given.  
                                                
1   If it is not dispatched to full capacity at least once, then it has more capacity than is optimal. 
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That is, the optimal charging and discharging each hour and the marginal values of 
capacity are computed given these hours.  A separate computation is needed to find an 
efficient set of values for ej. and fj.  The approach used here is discussed in the practical 
illustration portion of the paper. 

 

 

Figure 2: Illustration of the nomenclature for charging and discharging cycles 

 The formulation below is a constrained optimization.  A number of the constraints 
require that the dispatch of a device (a generator or the charge and discharge devices of 
the storage) in each hour must be less than or equal to its capacity.  To simplify the 
equations, we only represent those hours when the device is dispatched to its full capacity 
and the constraint is binding—the other hours have no effect on the analysis. We denote 
the set of hours that generator a is dispatched to its available capacity as 

! 

H
a

* .   

 The full set of variables and parameters is as follows: 

Subscripts and superscripts: 
a = designates generators, when appropriate this includes storage 

charge and discharge devices 

c = designates the charging device for storage in those cases where it 
is clearer to distinguish them from the generators 

d = designates the discharging device for storage in those cases where 
it is clearer to distinguish them from the generators 

r = designates the storage reservoir  
h = designates an hour of the year 

j = designates a charge/discharge cycle 
cap =  designates annual capacity costs 

var = designates variable costs 
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Objective function: 
Ctot =  total annual cost of system, $/yr 

Decision variables: 

ka =  the capacity of generator a, which is the peak output available 
from generator a, kW.  This includes the capacity of the storage 
charging and discharging devices. 

kr = capacity of the storage reservoir, kWh 

ga,h =  output, or dispatch, of generator a in the hour h, kW. 
fj = the hour that the storage reservoir fully charges on cycle j 
ej = the hour that cycle j begins, with storage level at 0 

Model parameters: 

! 

Ca

cap  =  annual capital cost of one unit of capacity for generator a or for 
the charge and discharge devices, $/kW-yr  

! 

Cr

cap  = annual capital cost for one unit of reservoir capacity, $/kW-yr 

! 

C
a

var

 =  variable operating cost of generator a, including the charge and 
discharge devices,  $/kWh 

Dh =  demand in hour h, kW 

ηd = efficiency of the discharge device 

ηc = efficiency of the charge device 

! 

Fa,h
prd

 =  production factor for generator a in period h.  This is the fraction 
of peak output that generator a can provide in period h.  If 

! 

Fa,h
prd  = 

1.0, the available output of the generator equals its peak capacity.  
If 

! 

Fa,h
prd= 0.5, the available output is 0.5 of its peak capacity.  For a 

dispatchable generator 

! 

Fa,h
prd=1 in all hours. 

Sets and references to elements of sets 

! 

H
a

*   =  the set of hours where generator a is dispatched to its full 
available capacity. 

H  =  all hours in a year. 

J  =  indices of all charging/discharging cycles. 

! 

j h( ) = the fill/empty cycle that contains hour h 

2.2. Analytic model 
 The model minimizes the total annual cost of the system, which is the sum of the 
annualized capital costs for all the generators plus their operating costs over the year.  
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The minimization is subject to the constraints that the total output each hour must equal 
the demand that hour, the dispatch of each generator must be less than or equal to its 
available capacity, and the storage must complete each cycle by fully charging and 
discharging. 

Objective: Minimize total annual cost 

    

! 

Ctot = Ca

cap • ka + Ca

var • ga,h( )
a

"
h

"
a

" + Cr

cap • rk  1 

Subject to the following constraints: 

Cannot exceed capacity of any generator or charging device (this formulation uses an 
equality constraint for those hours that the capacity constraint is binding) 

    

! 

ga,h = Fa,h

prd • ka                                 "a,  h # Ha

* 2 

Meet the demand in all hours, including the charging demand 

    

! 

ga,h

a"c

# = Dh +
gc,h

$
c

                    % h & H  3 

Storage must charge to capacity each cycle: 

    

! 

gc, i "
gd, i

#d

$ 

% 
& 

' 

( 
) = kr                   * j + J   

i=e j

f j

,  4 

 
Storage reservoir must discharge to zero each cycle 

    

! 

gd, i

"d

# gc, i

$ 

% 
& 

' 

( 
) = kr                   * j + J   

i=f j

e j+1

,  5 

 
The complete Lagrangian is:  



2/17/10 10:16 AM 8 

    

! 

L = ka •Ca

cap + Ca

var • ga,h

a

"
h

"
a

" + rk •Cr

cap

          + # a,h

h$ a
*

H

"
a

" ga,h % Fa,h

prd • ka( )                 do not exceed capacities

          + &h

h

" Dh +
gc,h

'c

% ga,h

a(c

"
) 

* 
+ 

, 

- 
.                     meet demand

          + / j

j

" kr % gc, i %
gd, i

'd

) 

* 
+ 

, 

- 
.  

i=e j

f j

"
) 

* 

+ 
+ 

, 

- 

. 

.                   storage charges to capacity

          + 0 j

j

"
gd, i

'd

% gc, i

) 

* 
+ 

, 

- 
. 

i=f j

e j+1

" % kr

) 

* 

+ 
+ 

, 

- 

. 

.                    storage discharges to zero

 6 

   

2.3. The derivatives of the Lagrangian and their interpretations 
 The sections below find the derivatives with respect to each of the variables in the 
Lagrangian.  The resulting equations have interpretations for the optimal operation of the 
system and for the computation of the marginal values of the components of the system.   

In these interpretations, the Lagrange multipliers play a prominent role.  To 
clarify the following discussion, the interpretation of the multipliers is discussed below: 

• λh is the Lagrange multiplier for the constraint that the sum of the output from the 
generators plus the discharge of the storage must equal the demand in hour h.  λh 
is the system marginal cost (SMC) in hour h.  It is the reduction in cost that would 
result from reducing the demand by one unit.  It equals the marginal generating 
cost of the most expensive generator that has been dispatched. 

• γa,h is the multiplier for the constraint that the dispatch of generator a cannot 
exceed the capacity of generator a.  It is the reduction in cost that would result 
from increasing the capacity of generator a by one unit in hour h. 

• αj is the multiplier for the constraint that the storage must completely charge in 
cycle j. It is the marginal system cost of adding a more unit of energy to storage in 
cycle j. 

• βj is the multiplier for the constraint that the storage cannot discharge below zero 
during cycle j.  It is the marginal system savings that would result if there were 
one more unit of energy in storage.  This is the same as the marginal revenue to 
the storage device of releasing an additional unit of energy from the storage 
reservoir. 

In the discussion below the variables αj, βj, fj, and ej must be determined to optimize 
the operation.  However, the equations do not provide an explicit method for determining 
their values.  In an optimization model these can be determined through an algorithm.  In 
the operation of a real system the operators will estimate them based on forecasts of 
future conditions.   
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The values of fj, and ej are decision variables.  However, in the formulation below 
they are treated as given and the other values are optimized given their values. An 
approach to determining these values is discussed in the example analysis.  

The first constraint in the Lagrangian specifies that a generator cannot be dispatched 
greater than its capacity.  In many hours of the year this will not be a binding constraint 
for a given generator (including the charge and discharge devices for the storage).  
Consequently, in the discussions below the derivatives for hours when this is a binding 
constraint (

! 

h"H
a

*) are presented separately from the derivatives for hours when it is not 
binding 

 The next sections present the derivatives of the Lagrangian with respect to each of the 
variables in the analysis and interpret them in terms of the operation of the system and the 
marginal values of capacity of the components. 

Derivative wrt the dispatch of the generators, ga,h:   Dispatch and marginal value 
of generation capacity 
This provides the conditions for optimal operation of the generators capacities.  Note 

that the storage charging and discharging devices are not included here since their 
conditions are somewhat different.  

! 

"L

"ga,h

=
Ca

var # $h                        h% a
*H ,   a & c,d

Ca
var

+ ' a,h # $h              h( a
*H ,   a & c,d

) 

* 
+ 

, + 
  

Setting to  zero and re-arranging we obtain 

7a 

! 

"h = Ca
var

                                     h# a
*

H ,   a $ c,d

% a,h = "h &Ca
var

                           h' a
*

H ,   a $ c,d
 

7b 

 
 The condition in equation 7a applies when generator a is not dispatched to its full 
available output in hour h. The generator should be dispatched such that its marginal 
operating cost is equal to λh, the marginal system cost in that hour. The variable costs in 
this formulation are constant so a generator is dispatched if its variable cost is less than or 
equal to λh , and is not dispatched otherwise. The fact that the variable costs are constant 
is not crucial in this formulation. If variable costs changed as a function of output, the 
generator would be dispatched up to the level that its variable cost equals the system 
marginal cost.  

 In the second condition, 7b, the generator is dispatched to its full capacity.  The 
system marginal cost will be greater than, or equal to, the generator’s marginal operating 
cost. The difference between the generator’s marginal operating costs and the system 
marginal cost is γa,h .  This is the value that an additional unit of capacity would provide 
in that hour, provided it generates at full capacity.  Intermittent generators often generate 
at less than full capacity, so this value must be modified to account for the reduced 
capacity.  This is discussed below.   
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Derivative wrt the rate of charge, gc,h:   Dispatch and capital recovery of the 
storage charging device  

 This derivative provides the conditions for the optimal dispatch of the charging 
device. These conditions indicate the level of dispatch of the charging device and the 
contribution to the marginal value of the charging capacity in hour h. There are four 
different conditions that give us four different derivatives depending on whether the 
charging device is dispatched to capacity (so that the constraint is binding) and whether 
the system is in the charging or discharging interval of a cycle. 

! 

"L

"gc,h

=

charging

interval
,         j(h) 

Cc

var +
#h
$c

%&
j h( )

                  h' c
*

H

Cc

var + ( c,h +
#h
$c

%&
j h( )

         h) c
*

H  

* 

+ 

, , 

- 

, 
, 

discharging

interval
,     j(h) 

Cc

var +
#h
$c

% .
j h( )                  h' c

*
H

Cc

var + ( c,h +
#h
$c

% .
j h( )        h) c

*
H  

* 

+ 

, , 

- 

, 
, 

* 

+ 

, 
, 
, 
, , 

- 

, 
, 
, 
, 
, 

 

Setting the derivatives in the equations above to zero and re-arranging we obtain the 
following set of conditions to met in hour h: 

 

8a 

8b 

8c 

! 

charging

interval
,       j(h) 

"h =  #c $ j h( )
%Cc

var( )                 h& c
*

H   

' c,h = $
j h( )

% Cc

var +
"h
#c

( 

) 
* 

+ 

, 
-            h. c

*
H   

/ 

0 
1 1 

2 
1 
1 

discharging

interval
 ,  j(h)

"h =#c 3 j h( ) %Cc

var( )                  h& c
*

H  

' c,h = 3
j h( )

% Cc

var +
"h
#c

( 

) 
* 

+ 

, 
-            h. c

*
H  

/ 

0 
1 1 

2 
1 
1 

         

8d 

 
To interpret these equations we note that when the system marginal price is very high, the 
storage does not charge at all.  When the SMC  is low, the storage charges at the full 
capacity of the charging device.  At intermediate SMCs the storage charges at a rate that 
is less than the full capacity of the charging device.   

Figure 3 illustrates the behavior of SMCs during a charging interval.  At the start of 
the interval the end-use demands on the system are relatively high so the SMC is high, as 
indicated by the fine line in the figure.  The SMC decreases as the end-use demands 
decrease.  At hour a the SMC declines to

! 

"h =#
c
$

j h( )
%Cc

var( ) and the storage begins to 
charge.  As it charges it adds load on the system, holding the SMC constant, following 
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the heavy line in the figure. Between hours a and b, it places enough additional load on 
the system to maintain the SMC at 

! 

"
c
#

j h( )
$Cc

var( ) as required by equation 8a.  

The hours between a and b are marginal hours for charging during this cycle. 

! 

"
j h( )  is 

the marginal cost of adding energy to the storage reservoir. Rearranging Equation 8a 
shows the marginal cost of adding a unit of energy to storage during this interval incurs a 
unit of variable operating cost plus the system marginal cost divided by the efficiency of 
the charging device: 

! 

"
j h( )

= Cc

var + #h $c
  

At hour b the end-use demands on the system drop to the point that the charging 
device is fully dispatched and can no longer maintain the SMC at 

! 

"
c
#

j h( )
$Cc

var( ).  At this 
point the SMC begins to decline further, following the heavy line. However, the SMC I 
higher than it would have been without storage.  

From hour b until hour c the charging device is fully dispatched and Equation 8b 
applies.  During this interval, additional charging capacity would be valuable to the 
system since it would allow the storage to take in more energy at a lower price.   
Equation 8b computes the contribution to the marginal value of charging capacity in each 
hour.  Just as in the case of other conversion technologies, γc,h is the Lagrange multiplier 
on the constraint that the capacity of the charging device cannot be exceeded.  Here γc,h  
is the difference between 

    

! 

C
c

var
+ "

h
#
c
, the cost of adding a unit of energy in that hour, 

and

! 

"
j h( ) , the marginal cost of adding to storage in that cycle.   This is the value that 

additional charging capacity would provide in that hour. The marginal value of a unit of 
charging capacity is the sum of the γs over the year.  For a single charging cycle, as 
illustrated in Figure 3, the contribution to the marginal value of charging capacity is the 
area of the grey semicircle bounded by 

! 

"
j h( )

#Cc

var  at the top and   

! 

"
h
#
c
at the bottom. 

If the variable cost were zero and the charging were perfectly efficient, γc,h would be 
equal to αj - λh.  In that case, the value of an additional unit of charging capacity, in that 
hour, would be just equal to the difference between the marginal cost of charging during 
that cycle and the SMC in that hour. 
 The storage can also charge during the discharging interval.  This more easily 
described after discussing the system behavior while discharging.  
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Figure 3: Illustration of changes in system marginal cost during a charging 
interval  

 

Derivative wrt the rate of discharge:  Dispatch and capital cost recovery of the 
discharge device, gd,h:  

 This gives us the conditions for the optimal dispatch of the discharging device.  
Similar to the charging device there are four different system conditions that give us four 
different equations: 

 

! 

"L

"gd ,h

=

  
charging

interval
,       j(h) 

Cd

var # $h +
%

j h( )

&d
                  h' d

*
H

Cd

var + ( d ,h # $h +
%

j h( )

&d
        h) d

*
H  

* 

+ 

, 
, 

- 

, 
, 

discharging

interval
 ,    j(h) 

Cd

var # $h +
.
j h( )

&d
                  h' d

*
H

Cd

var + ( d ,h # $h +
.
j h( )

&d
         h) d

*
H  

* 

+ 

, 
, 

- 

, 
, 

* 

+ 

, 
, 
, 
, 
, 

- 

, 
, 
, 
, 
, 

 

 

Setting these to zero and re-arranging gives the following equations governing the 
discharge of storage and the contributions to the marginal value of the discharge capacity: 
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9a 

9b 

9c 

! 

discharging

interval
 ,  j(h) 

"h = Cd
var +

# j h( )

$d
                           h% d

*H

& d,h = "h ' Cd
var +

# j h( )

$d

( 

) 
* 

+ 

, 
-               h. d

*H

/ 

0 

1 
1 

2 

1 
1 

charging

interval
 ,       j(h) 

"h = Cd
var +

3 j h( )

$d
                           h% d

*H

& d,h = "h ' Cd
var +

3 j h( )

$d

( 

) 
* 

+ 

, 
-                h. d

*H  

/ 

0 

1 
1 

2 

1 
1 

 

9d 

  

 The behavior of the discharge device is illustrated in Figure 4.  This is analogous to 
the behavior of the charging device.  During the discharge part of the cycle the storage 
begins to discharge once the SMC increases to 

    

! 

Cd

var + "
j h( ) #d .  At this SMC, the 

earnings per unit discharged from the storage reservoir (i.e. not including the efficiency 
losses and operating cost the discharging device) is βj. 

 Analogous to the charging cycle, between hours a and b the storage discharges at a 
rate to maintain the SMC at 

    

! 

Cd

var + "
j h( ) #d .  After hour b the load on the system has 

risen to the point that the discharge device is dispatched to capacity and can no longer 
maintain that SMC.  After time b the SMC rises following the heavy line. 

 

Figure 4:  Illustration of system marginal cost during discharge interval 

The contribution to the marginal value of discharging capacity, γd,h, is the difference 
between the SMC, λ, and 

! 

Cd

var + "
j h( ) #d .   The area of the grey semicircle bounded by 
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the SMC (with charging, the heavy line) on the top and the line 
    

! 

Cd

var + "
j h( ) #d   on the 

bottom is the contribution to the marginal value of discharge capacity for this cycle. 

Derivative wrt the capacities of the generators, ka:  Capital cost recovery for 
generators and for the charge and discharge devices 

 This gives us the conditions for the optimal capacities of the generators 

    

! 

"L

" ak
= a

cap
C # $a,h • Fa,h

prd( )
h% a

*
H

&                   

Setting to 0 and re-arranging yields 

    

! 

a
cap

C = "a,h • Fa,h
prd( )

h# a
*

H

$   10 

For the optimized system marginal value of capacity is equal to the marginal cost of 
capacity.  The total marginal value of capacity is the sum of the marginal capacity values, 
γs,  over the year.  In the case of intermittent generators the available capacity in each 
hour is multiplied by 

! 

Fa,h
prd  so the actual value provided by an increment of capacity is 

    

! 

"a,h • Fa,h
prd  in hour h.  

 This interpretation applies to the both the electric generators and to the storage 
charging and discharging devices. 

Derivative wrt the capacity of the storage reservoir, kr:  Capital cost recovery of the 
storage reservoir 

 This derivative gives us the optimal conditions for the capacity of the storage 
reservoir 

  

! 

"L

"kr

= Cr

cap
+ # j

j

$ % & j

j

$   

Rearranging and setting to 0 yields: 

 
  

! 

" j #$ j( )
j

% = Cr

cap 11 

From equation 11 we see that the marginal value of the reservoir is a function of the 
number of times that the reservoir fully cycles over the year and the differentials between 
α and β when it cycles.  The marginal value of the storage reservoir is determined by the 
minimum price at which it discharges and the maximum price at which it charges. 
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Charging during the discharge interval and discharging during the charging 
interval 

 During the charging and discharging intervals of a cycle it is quite possible that the 
storage will be both charging and discharging during the interval.  This would be 
particularly likely when the intervals extend over several days.    

 Equations 9c, and 9d show the conditions for discharging during the charging 
interval. If we discharge a unit of energy from storage, the value to the storage reservoir, 
after accounting for the losses and the operating cost of the discharge device, will be 

! 

"
d
#
h
$C

d

var( ) .  It is worthwhile to discharge a unit of energy from the reservoir whenever 
this value is greater than 

! 

"
j h( ) , the marginal cost of adding a unit of energy to the storage 

reservoir.  Therefore, during the charging interval it will be worthwhile to discharge 
whenever;  

! 

"h #Cd

var +$
j h( )

%d   

 Similarly, equations 8c and 8d show the conditions for charging during the 
discharging interval.  The marginal value of discharging from the storage reservoir is 

! 

"
j h( ).  If the cost of adding a unit of energy is less than this, it is optimal to charge.  The 

cost of adding a unit of energy is 

! 

"
h

+C
c

var( ) #c .  Thus it is worthwhile to charge 

whenever 

! 

"h #$c
%
j h( ) &Cc

var( ) . 

Case when the same device charges and discharges 
 In this mathematical formulation charging and discharging are represented as separate 
devices.  In most real storage technologies charging and discharging use the same 
physical device.  When that is the case, the marginal value of capacity is simply the sum 
of the hourly marginal capacity values (γs) attributed to the device in either mode.  

3.  Practical illustration of the application and the marginal 
values of the storage system components 

 The following example uses the equations derived above to illustrate the marginal 
value and penetration of large-scale storage in a system based on data for California.  It is 
not intended to be a model of the California system, but this gives a view of the results 
that could be obtained from the theoretical analysis derived above.  The example 
computes the marginal values of charging/discharging capacity and reservoir capacity.  
Given the costs and efficiencies of these capacities for a given storage technology, we 
can determine the optimal capacities and penetration in the system. 

3.1. Structure of the modeled system and the underlying data 
 This analysis is based on the hourly prices from a time dependent value study of the 
California system (PG&E, 2001) and loads for 2001.  Figure 5 illustrates the pattern of 
prices over the year for this example. The peak load in this example has been scaled to 60 
GW and the total generation over the year is 332,000 GWh. It assumes that the storage is 



2/17/10 10:16 AM 16 

90% efficient on charging and discharging (81% efficient round trip).  It also assumes 
that the charging and discharging uses the same device.  The analysis does not make 
assumptions about the cost of the storage.  The results of the analysis show how much 
storage would be optimal, given the costs of the capacities. 

 

Figure 5:  Patterns of prices over the year for this example 

3.2. Modeling steps 
 The analysis first develops a relationship between load and price on the system.  It 
then applies the equations above to determine the charging or discharging each hour of 
the year. This gives us the values of α and β for each cycle and the marginal values of 
capacity.  The final step plots the contours of marginal values for storage reservoir 
capacity and charge/discharge capacity as a function of the reservoir and 
charge/discharge capacity. 
 The relationship between price and load is modeled using a bi-linear fit for each day. 
One linear fit is calibrated to the low load hours of the day and the other is calibrated for 
the highest hours of load each day. During most months the two linear fits are very 
similar.  During the summer months there is a sharp break with rapidly rising prices once 
the load exceeds a threshold.  The threshold is different for each day, so a different fit is 
needed for each day.  Figure 6 illustrates the bi-linear fit for a summer day. 
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Figure 6: Example of bilinear fit on day 220 

Figure 7 shows a scatter plot of the fitted prices and the original data.  The 
bilinear fits do a good job of reproducing the price tracks over the year. However, since 
this is an illustration we have used the fitted data for the analysis, not the original data so 
that comparisons are internally consistent.  

 

Figure 7: Scatter plot comparing system prices from original data and prices 
using bilinear fit and loads for each day 

 A series of cases was run assuming different values for storage energy capacity and 
charge/discharge power capacity in each case.  For each case, the model was executed for 
each day over the year. The Solver function in Excel was used to determine if the storage 
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can cycle in each day and to determine the optimal values of α and β. For each case the 
the αs, βs and γs were summed up over the year to give the marginal values of capacities 
for that case.  

 The hours in which the storage was required to completely charge and discharge 
(the values of fj, and ej in the theoretical formulation) were determined using a practical 
rule:  The storage was completely cycled each day, if it was economically advantageous 
to do so.  For each day values for αj and βj needed to fully charge and discharge were 
first determined.  As long as the spread of SMC was great enough, αj was less than βj and 
it was economically worthwhile to cycle the storage fully.  In some cases the SMC spread 
was so small that αj would have to be greater than βj in order to fully cycle the storage.  
This implies that if the storage were completely charged and discharged that day, the 
marginal cost of charging would be greater than the marginal revenue of discharging.  
Clearly this would not be efficient.  In those cases the storage was only cycled up to the 
point that αj was equal to βj. During these partial cycles the storage system does earn net 
revenues.  But these revenues do not increase the marginal value of storage capacity since 
the storage system could have earned the same revenue with less capacity.  The appendix 
describes the execution in more detail, and illustrates the cases when the storage can fully 
charge and discharge over a day, partially charge and discharge, and cannot charge at all. 

3.3. Results from the analysis 
 The primary result from the analysis are shown in Figure 8 which shows two super-
imposed sets of contours, one set for the marginal values of reservoir capacity and the 
other set for the marginal values of charge/discharge capacity.  These are plotted as 
functions of the reservoir energy capacity and charge/discharge power capacity.   
 For a given type of storage technology, the marginal costs of reservoir and 
charge/discharge capacities are known.  We will assume they are constant (this excludes 
pumped storage)  We can determine the contour that corresponds to each marginal cost.  
At the point where the two contours intersect the marginal values of reservoir capacity 
and of charge/discharge capacity will be just equal to their marginal costs.  This gives the 
optimal capacities for that storage technology in this example system.  To illustrate, 
assume (optimistically) that there is a storage technology with an annual cost 2.0 $/kW-yr 
for the charge/discharge capacity and a reservoir cost of cost of 1.5 $/kWh-yr.  The 
optimal storage system for this example would have a charge/discharge capacity of 1.25 
GW and a reservoir capacity of about 6.3 GWh.  If the annual cost of the reservoir were 
to decline to 1.0 $/kWh-yr, the optimal capacities would be 2.2 GW of charge/discharge 
capacity and 12.5 GWh of reservoir capacity. 
 As would be expected, both types of capacity show decreasing returns to scale.  At 
very small charge/discharge power capacity the marginal value of capacity is 14$/kW-yr.  
However, as the charge/discharge capacity increases, the marginal value drops essentially 
to zero, 0.01 $/kW-yr.  Similarly, at a small volume of energy storage capacity the 
marginal value of storage capacity is 2.5 $/kWh-yr.  At larger capacities the marginal 
value drops to 0.05 $/kWh-yr, in this example. 
 Increasing the capacity of one component improves the marginal value of the other 
component.  At very small capacities this effect is very strong.  As a result the two sets of 
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contours are fairly parallel for small values of reservoir and charge/discharge capacity.  If 
storage is economically feasible at all, several GWhs of storage would be feasible.  
However, at levels above a few GWhs of storage, the contours begin to diverge.   

 

Figure 8:  Contours of the marginal values of storage reservoir capacity and 
charge/discharge capacity 

 This example finds a low value of reservoir capacity.  The maximum value plotted in 
the figure is 2.5 $/kWh-yr for a reservoir capacity of a few hundred kWh.   The marginal 
value of reservoir capacity increases as the capacity decreases.  However, it is bounded.  
An upper bound on the marginal value of reservoir capacity that is cycled daily is the sum 
of the daily differences between the maximum and minimum prices.   This is essentially 
the value of a very small storage reservoir--a few kWh of storage and a large charging 
capacity that would allow it to charge and discharge in one hour, with perfect efficiency.  
Such a small storage could charge completely every day and not disturb the system 
prices. For such a small system the upper bound value is 5.75 $/kWh-yr for this set of 
prices.  When the model is run with a very small capacity and perfect efficiency, the 
value of storage capacity reaches 5.35 $/kWh-yr.  However, because the charge/discharge 
capacity is so large compared to the reservoir capacity, the marginal value of charging 
capacity is only 0.0027 $/kW-yr. 

 The low value of storage capacity is partly due to the small daily price variations 
during winter and spring for this data set. However, the low value is also due to the fact 
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that during the summer, the price during the highest price hours is sensitive to the load on 
the system (see Figure 6).  As soon as storage becomes large enough to affect the system, 
the storage discharge lowers the peak prices.  The effect of this can be seen in the price 
duration curves shown in Figure 9.  In this example, peak prices are lowered more than 
off peak prices are increased.  Further work will be needed to determine if this is a 
general result. 

 

Figure 9: Price duration curves without storage and with 30 GWh of reservoir 
storage and 10 GW of charge/discharge capacity 

 These results are based on data from one region for a single year.  We can expect that 
different regions and different years will result in different values. Graves, et al (1999) 
studied systems with small discharge capacity (1 MW) and large reservoir capacity (20 
MWh).  They found a wide variation in the value of storage ranging from 10 to 13 $/kW-
yr at the California Oregon border to 26 to 32$/kW-yr at Palo Verde. They also found 
substantial year-to-year differences in value, in some cases up to 50% variation.  To 
evaluate storage in any given location, it will be necessary to consider its performance 
over a series of years to better estimate its value over its lifetime. 

4. Future work 

 This study provides the basic economic framework for evaluating the economics of 
energy storage and illustrates the application to an existing system.  However, the 
economics of storage itself is only part of the question.  The longer-term goal of this 
research is an understanding the role that storage might play in future system.  We can 
identify several areas where future study is needed:  
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• Investigate the long-term impact of large-scale storage on the structure of the 
system.  Large-scale storage changes the patterns of prices on the system.  These 
changes will change the optimal mixes of the dispatchable and intermittent 
generators. Storage can increase intermittent penetration if it raises prices during 
hours that the intermittent generates—thereby increasing the revenue to the 
intermittent.  Conversely, storage could discourage some types of intermittent 
penetration (e.g. solar) if it lowers the prices during hours that the intermittent 
generates. 

• Find practical procedures for optimizing the operations of real systems.  Operators 
need to specify the future hours in which the storage should optimally be full 
charged and discharged.  They then need to estimate the values of α and β to 
determine the prices at which they should charge and discharge in order to fully 
cycle the storage by the specified hours.  We need to determine strategies for 
doing this, and estimate the performance of storage under realistic conditions. 

• Determine the most important R&D efforts for improving storage.   The analysis 
shows the impacts of changing marginal costs and efficiencies of different storage 
components. Further studies should demonstrate the way that improvements in 
each dimension could affect the marginal values of storage for different 
applications in different regions. 

5. Conclusions 

If storage is to be a significant part of future energy systems it will be deployed at scales 
large enough to affect the prices on the system.  The change in prices affects both the 
ultimate penetration of storage and the economic penetration of other technologies. This 
work provides the theoretical framework to determine the optimal operation of storage, 
evaluate its effect on system marginal prices, and assess the marginal value of the storage 
components.  Applying this theory to the operation of a real energy system shows us the 
changes in prices that might occur, and the interaction between charge/discharge capacity 
and the storage reservoir capacity. The capacity of each component affects the marginal 
value of the other, so they must be optimized together.  This affect is particularly strong 
at low levels of penetration. Finally, substantial future work needs to be done to better 
understand the impacts of storage on the balance of the system, and to understand how 
storage can be optimally operated in realistic settings. 
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8. Appendix:  Detailed description of marginal costs and 
storage operation 

 For each charge and discharge cycle the rates of charging and discharging are 
controlled by the values of αj and βj.  These values are set so that the storage is fully 
charged by hour fj and then fully discharges by hour ej+1. Increasing α increases the 
amount stored.  Decreasing β increases the amount discharged.  To balance the charging 
and the discharging, levels of α and β must be found such that: a) the charging and 
discharging are equal, and b) the reservoir capacity is not exceeded.   

 The model first attempts to cycle the storage each day.  However, in many days fully 
charging and discharging the storage would require that αj be greater than βj.  When this 
happens, it implies that the marginal cost of charging is greater than the marginal revenue 
from discharging.  This is not optimal for the operation of storage.  When this case arises, 
αj and βj are set equal to each other and adjusted so that the total charge into the storage 
reservoir is just equal to the total discharge from the reservoir (note that because of 
efficiency losses, the total energy taken from the system is greater than the energy 
returned to the system). 

 The storage charges when the SMC is less than 

! 

"
c
#

j h( )
$Cc

var( ).  It discharges when 

the SMC is greater than 

! 

Cd
var + " j h( ) #d .  To simplify notation in this discussion let  

! 

j(h)
*" =#c " j h( ) $Cc

var( ),  and   

! 

j(h)
*" = Cd

var + " j h( ) #d  

 The difference between β and α is the contribution in that cycle to the marginal value 
of reservoir capacity.  The contributions are added up over the year to arrive at the total 
marginal value of reservoir capacity over the year. 
 Three cases are illustrated in the following figures.  In these cases the storage 
capacity is 24 GWh and the charging capacity is 3 GW: 

• The reservoir can completely charge and discharge during the cycle (Figure 10). 
In this case α is less than β so there is a net revenue and a contribution to the 
marginal value of storage capacity since the storage would have earned more on 
this cycle if there had been more capacity.  Also note that the SMC is less than α* 
during charging and greater than β* during discharging.  This implies that there is 
a contribution to the marginal value of charging and discharging capacity. 
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Figure 10: Marginal system costs and alpha and beta in cases for day 220, 
storage can completely charge 

 
• The reservoir can partially charge (Figure 11). Here the storage cannot 

economically completely charge and discharge even when α equals β.  Because α 
equals β there is no contribution to the marginal value of storage capacity for this 
cycle.  However, there is still a net revenue to the storage.  There is no 
contribution to the marginal value of storage capacity because the storage would 
have earned just as much with less capacity.  During the charging interval the 
SMC is less than α* so there is a contribution to the marginal value of charging 
capacity.  However, during the discharging interval the SMC is equal to β* so 
there is no contribution to discharge capacity. 

 

Figure 11: Marginal system costs and alpha and beta in cases for day 121, 
storage can only partially charge 
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• The reservoir cannot economically charge at all (Figure 12).  Even if α equals β 
the charging and discharging prices are still outside of the range of prices for that 
day 

 

Figure 12: Marginal system costs and alpha and beta in cases for day 80, storage 
cannot economically charge 

 




